

Maritime University of Szczecin

**Faculty of Marine Engineering** 

**Department of Physics and Chemistry** 



**Physics Laboratory** 

Laboratory Description

Verification of Ohm's law for DC (direct current) circuits

English version written by dr Agata Kowalska

Szczecin 2017

## **Objectives:**

- Getting acquainted with DC circuits.
- Checking the linear dependence of the current flowing through the resistor of applied voltage.
- Determination of resistance values of unknown resistors and their connections: series and parallel.

## Questions and problems to solve:

- What is the electric current? What does is flow in metals, semiconductors, liquids and gases?
- Ohm's Law. How is it verified in the exercise?
- Resistance and resistivity. What does resistance of conductor depend on?
- Equivalent resistance in series and parallel connection of resistors.

## Short description:

Ohm's Law can be verified if we demonstrate that the current flowing through a resistor or a connection of resistors is directly proportional to the applied voltage U

$$I = \frac{1}{R}U\tag{1}$$

where the inverse of the resistance is the proportionality constant.

We connect the electrical circuit according to the following diagram. The circuit should consist of a current power supply, a resistor and an ammeter.

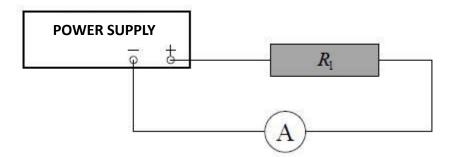



Fig. 1. Schematic view of the circuit used in the experiment

We vary the voltage of the power supply and measure the dependence of current I flowing through the resistor  $R_1$  on the applied voltage U.

Afterward, we set up other circuits where we replace the resistor  $R_1$  with:

- 1. the resistor  $R_2$ ,
- 2. resistors  $R_1$  and  $R_2$  connected in series,
- 3. and resistors  $R_1$  and  $R_2$  connected in parallel.

Every time we measure the dependence of current I on voltage U.

In one graph we present a dependency I(U) for all examined circuits. Using a linear regression we find the resistance of individual resistors  $R_1$  and  $R_2$  as well as resistors connected in series and in parallel. Using formulas:

$$R'_{s} = R_{1} + R_{2}, (2)$$

$$R'_{R} = \frac{R_1 R_2}{R_1 + R_2} \tag{3}$$

we calculate the equivalent resistance of series and parallel connections. We compare resistance values  $R'_{S}$  and  $R'_{R}$  with values  $R_{S}$  and  $R_{R}$  obtained previously and draw the conclusions.

## Literature:

1. Resnick R., Halliday D., Walker J., *Fundamentals of Physics*, John Wiley & Sons, INC (available editions).