

Maritime University of Szczecin

Faculty of Marine Engineering

Department of Physics and Chemistry

Physics Laboratory

Laboratory Manual

Determination of the logarithmic decrement of a physical pendulum

> English version written by dr Agata Kowalska

Szczecin 2018

Instruments:

- 1. Physical pendulum.
- 2. Stopwatch.
- 3. Ruler.

Exercise:

- 1. Place the ruler on the table so that the zero scale coincides with the equilibrium position of the pendulum.
- 2. Measure the time t_{20} of 20 oscillations of closed pendulum. Perform this measurement five times. Calculate mean value \overline{t}_{20} for 20 oscillations.
- 3. Using the equation:

$$T = \frac{\bar{t}_{20}}{20}$$

calculate oscillation period of the closed pendulum.

- 4. Deflect the pendulum from the equilibrium position so that the displacement on the ruler was equal to A = 25 cm.
- 5. During 10 whole oscillation periods measure the subsequent displacements A of the pendulum (with an accuracy of 1 mm) on both sides of the equilibrium position. Perform this measurement three times. Place the results in the table. Calculate mean values of \overline{A} . Since the oscillation period T of the closed pendulum is known, calculate the time t corresponding to the subsequent pendulum's displacement.
- 6. Using the definition:

$$\lambda_{def} = ln\left(\frac{\overline{A}(t)}{\overline{A}(t+T)}\right)$$

calculate value of the logarithmic decrement λ_{def} for subsequent times t and the mean value $\bar{\lambda}_{def}$.

- 7. Repeat the activities described in points 2-5 for the opened pendulum.
- 8. On one graph present the $\ln(\bar{A})$ as function of time *t* for closed and opened pendulum. Using the linear regression calculate the damping ratios β of examined pendulums:

$$\ln(\bar{A}) = -\beta \cdot t + \ln(A_0)$$
$$y = a \cdot x + b$$

For each of the pendulums calculate:

- damping constant: $B = 2\beta m$ (m = 361 g pendulum's mass),
- relaxation times: $\tau_{reg} = \frac{1}{\beta}$,
- logarithmic decrements: $\lambda_{reg} = \beta T$.

- 9. On one graph present the pendulum's displacement as function of time and damping curve for both examined pendulums. Using the graph determine relaxation times τ_{graph} and logarithmic decrements λ_{graph} .
- 10. Enter the results into the table:

Physical quantity		Symbol	Unit	Opened pendulum	Closed pendulum
damping ratio					
damping constant					
oscillation period					
relaxation time	$ au_{reg}$				
	$ au_{graph}$				
logarithmic decrement	$ar{\lambda}_{def}$				
	λ_{reg}				
	λ_{graph}				

11. Note the conclusions.