

Maritime University of Szczecin

Faculty of Marine Engineering

Department of Physics and Chemistry

Physics Laboratory

Laboratory Description

Transformations of mechanical energy on an inclined ramp

English version written by dr Agata Kowalska

Szczecin 2017

Objectives:

- Getting acquainted with transformations of mechanical energy taking place while rolling down a body on an inclined ramp.
- > Determination of the rotational inertia of a ball.

Questions and problems to solve:

- The principle of the conservation of mechanical energy.
- Steiner's theorem.
- The force and the moment of force acting on a ball rolling down an inclined ramp.

Short description:

The exercise starts from examination of rolling down a ball on an inclined ramp. Total mechanical energy of a ball is a sum of its potential energy E_p :

$$E_p = mgh \tag{1}$$

kinetic energy of progressive movement:

$$E_{k\,progr} = \frac{1}{2}mv^2\tag{2}$$

and kinetic energy of rotational motion:

$$E_{k\,rot} = \frac{1}{2}I_0\omega^2\tag{3}$$

where *m*, I_0 , *v* and ω are: the mass, the rotational inertia, the linear velocity and the angular velocity of the ball, respectively, and *h* is the height at which the ball is placed. According to the rule of conservation of energy, the total mechanical energy of the rolling ball is constant:

$$E_t = mgh + \frac{1}{2}mv^2 + \frac{1}{2}I_0\omega^2 = const$$
 (4)

We measure the mass *m* and the diameter *d* of the ball to obtain the radius *R*. We calculate the rotational inertia I_0 of the ball :

$$I_0 = \frac{2}{5}mR^2 \tag{5}$$

We measure the total length *S* and the height *H* of the inclined ramp. We place the ball at the top of the ramp and measure time t_1 after which the ball will reach the half length of the ramp and time t_2 after which the ball will be at the bottom of the ramp. We calculate velocities v_1 and v_2 in both positions of the ball:

$$v_1 = \frac{S}{t_1} \tag{6a}$$

$$v_2 = \frac{2S}{t_2} \tag{6b}$$

and corresponding angular velocities:

$$\omega_1 = \frac{\nu_1}{R} \tag{7a}$$

$$\omega_2 = \frac{\nu_2}{R} \tag{7b}$$

According to the formula (4) we calculate and compare the total mechanical energy of the ball at the top, at the half-length and at the bottom of the ramp. We repeat measurements and calculations for different angles of inclination and other bodies- balls or rollers. The rotational inertia I_0 of a roller is given by the equation:

$$I_0 = \frac{1}{2}mR^2 \tag{8}$$

Literature:

1. Resnick R., Halliday D., Walker J., *Fundamentals of Physics*, John Wiley & Sons, INC (available editions).