

Maritime University of Szczecin

Faculty of Marine Engineering

Department of Physics and Chemistry

Physics Laboratory

Laboratory Manual

Determination of cp/cv ratio

English version written by dr Agata Kowalska

Equipment:

- 1. Tank with tested gas.
- 2. Open liquid manometer.
- 3. Compressor.
- 4. Wall barometer.

Exercise:

- 1. From the wall barometer read the air pressure p_0 in the room.
- 2. Use a compressor to obtain an excess pressure in the tank corresponding to the 0.8 m difference of liquid levels in both manometer arms.
- 3. Wait for 3 minutes until the temperature of the gas in the tank reaches the ambient temperature.
- 4. From the left scale of the manometer read (with 1 mm accuracy) liquid levels $h_{1\text{MAX}}$ and $h_{1\text{MIN}}$. Calculate their difference $h_1 = h_{1\text{MAX}} h_{1\text{MIN}}$.
- 5. Open and close the tank valve for swiftly, so that due to the adiabatic expansion of the examined gas, the pressure equalizes with external pressure.
- 6. Wait until the difference in the level of the liquid in both manometer arms stops to increase.
- 7. From the left scale of the manometer read (with 1 mm accuracy) liquid levels h_{2MAX} and h_{2MIN} . Calculate their difference $h_2 = h_{2MAX} h_{2MIN}$.
- 8. Four times repeat the steps 2-7.
- 9. Using equations: $p_1 = p_0 + \rho g h_1$ and $p_2 = p_0 + \rho g h_2$, where ρ is the liquid density and g is the gravitational acceleration, calculate pressures p_1 and p_2 of the air inside the tank, which correspond to liquid level differences h_1 and h_2 .
- 10. For each set of measurements calculate the ratio:

$$\kappa = \frac{c_p}{c_v} = \frac{\Delta p_{ad}}{\Delta p_{izot}} = \frac{p_1 - p_0}{p_1 - p_2}$$

11. Calculate mean value of $\bar{\kappa}$ and its standard deviation. Compare the experimental value with the table value for air.

Table:

$$p_0 = \dots hPa$$

h_{IMAX}	h_{1MIN}	h_1	p_1	h_{2MAX}	h_{2MIN}	h_2	p_2	16
[m]	[m]	[m]	[hPa]	[m]	[m]	[m]	[hPa]	κ

$\bar{\kappa} = \dots \pm \dots$						
$\kappa_{tabl} = \dots$						