
The change ∆𝑈 in the potential energy

during the shift from an initial to a final state.

done by a conservative force 

is defined to equal to the negative of the work 
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Dividing potential energy by charge gives physical quantity 

called electric potential (or simply potential) 𝑉:

that:

• depends only on source charge distribution 

• has value at every point in electric field 

Potential Difference

and Electric Potential
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Potential Difference

and Electric Potential

The electric field is a measure of 

the rate of change of the electric 

potential with respect to position.
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Electronvolt

19 191 eV 1.60218 10  C 1 V 1.60218 10  J− −=   = 

W q V= − 

Electronvolt it is the amount of energy gained (or lost) by the 

charge of a single electron moving across an electric potential 

difference of one volt.



Potential Difference in a 

Uniform Electric Field
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Particle in Electric Field
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Positive charge moves from higher to lower potential region.

Negative charge moves from lower to higher potential region.
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Equipotential Surfaces
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Equipotential surface: any surface consisting of continuous 

distribution of points having same electric potential.

Equipotential surfaces are perpendicular to the field.

E = const



Electric Potential

without Electric Field

B

A
dV = −  E s

In the region without electric filed 

there is no change in electric potential value.

( )0 constV V=   = =E 0



Example 24.1: The Electric Field Between 

Two Parallel Plates of Opposite Charge

A battery has a specified potential difference V between its 

terminals and establishes that potential difference between 

conductors attached to the terminals. A 12-V battery is 

connected between two parallel plates as shown in the figure. 

The separation between the plates is d = 0.30 cm, and we 

assume the electric field between the plates to be uniform. 

(This assumption is reasonable 

if the plate separation is small 

relative to the plate dimensions

and we do not consider locations 

near the plate edges.) Find the 

magnitude of the electric field 

between the plates. 



Example 24.1: The Electric Field Between 

Two Parallel Plates of Opposite Charge
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Example 24.2:

Motion of a Proton in a Uniform Electric Field

4

A proton is released from rest at point A in a 
uniform electric field that has a magnitude of 

8.0 10  V/m, as shown in the figure. The 
proton undergoes a displacement of magnitude

0.50 m to point B id



= n the 

direction of . Find the speed 
of the proton after completing 
t
What will be the speed
if the particle is an electron?

he displacement.

E



Example 24.2:

Motion of a Proton in a Uniform Electric Field
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Electric Potential and Potential Energy 

Due to Point Charge
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Electric Potential and Potential Energy 

Due to Point Charge
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Electric Potential and Potential Energy 

Due to Point Charges
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Electric potential resulting from two or more point charges could be 

obtained by applying superposition principle:

Total electric potential at some point P due to several point charges 

= sum of potentials due to individual charges 



Electric Potential Due to Continuous

Charge Distributions
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Example 24.3: The Electric Potential 

Due to Two Point Charges

As shown in the figure, a charge q1 = 2.00 C is 

located at the origin and a charge q2 = −6.00 C is 

located at (0, 3.00) m. 

Find the total electric potential due to these charges at 

the point P, whose coordinates are (4.00, 0) m. 
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Obtaining the Value of the Electric Field

from the Electric Potential
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Obtaining the Value of the Electric Field

from the Electric Potential
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Conductors in Electrostatic Equilibrium

1. E = 0 inside conductor

2. Charge resides on surface of isolated 

conductor

3. E at point just outside conductor, 

perpendicular to surface, has magnitude /0

4. Irregularly shaped conductor:  greatest 

where radius of curvature smallest



Conductors in Electrostatic Equilibrium

E = 0 inside conductor

Conducting slab placed in external field 𝑬:

• Before external field applied: free electrons uniformly distributed 

throughout conductor 

• When external field applied: free electrons accelerate (to the left in 

figure)

• Causing plane of negative charge to accumulate on left surface 

• Movement of electrons to left results in plane of positive 

charge on right surface 

• These planes of charge create additional electric field inside 

conductor that opposes the external field

• As electrons move surface charge densities on left and right surfaces 

increase until magnitude of internal field = external field 

• Result: net field = 0 inside conductor



Conductors in Electrostatic Equilibrium

Charge resides on surface of isolated conductor

• Gaussian surface drawn inside conductor 

• Can be very close to conductor’s surface 

• Electric field everywhere inside conductor = 0 when in 

electrostatic equilibrium

• Electric field must be zero at every point on gaussian 

surface

• Net flux through gaussian surface = 0

• Conclusion: net charge inside gaussian surface = 0 

• No net charge inside gaussian surface (which is arbitrarily 

close to conductor’s surface) →

• Any net charge on conductor must reside on surface 
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Electric Fields and Charged Conductors
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E at point just outside conductor is perpendicular 

to surface and has magnitude /0
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Electric Fields and Charged Conductors
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The surface of any charged conductor in 

electrostatic equilibrium is an equipotential surface: 

every point on the surface of a charged conductor in 

equilibrium is at the same electric potential. 

Furthermore, because the electric field is zero 

inside the conductor, the electric potential is 

constant everywhere inside the conductor and equal 

to its value at the surface.



Electric Potential and Electric Field of 

Charged Conductor 



Surface Charge Density on 

Charged Conductior



Two spheres very far apart connected by a wire:

• Potential at surface of each sphere

equal because connecting wire assures that whole system a single conductor 

• Ratio of electric fields at surfaces of two spheres

= inverse ratio of radii of spheres 

• Field strong when radius small

• Field weaker when radius larger 

• Electric field reaches very high values at sharp points

Surface Charge Density on 

Charged Conductor
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Irregularly shaped conductor:  greatest where radius of curvature smallest

𝑟2 < 𝑟1 ⇒ 𝐸1 < 𝐸2

𝜎1 < 𝜎2



A Cavity Within a Conductor
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Conductor of arbitrary shape contains cavity

• Assume no charges inside cavity

• Electric field inside cavity must be zero regardless 

of charge distribution on outside surface of 

conductor (Gauss law)

• Field in cavity = 0 even if electric field exists 

outside conductor 

Every point on conductor at same electric potential:

any two points A and B on cavity’s surface must be at same 

potential 



Faraday Cage

• Faraday cage: conducting material, either 

solid or mesh, surrounding interior space

• Used to protect sensitive electronic equipment

• Protects you if you are inside a car during a 

lightning storm 

• Metal body of car acts as Faraday cage 

→ any charge on car due to strong 

electric fields in car on outer surface 

• Electric field inside = 0

• Faraday cages: negative effect, i.e., loss of 

cellphone service inside a metal elevator


