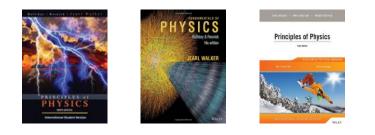
PHYSICS

dr Bohdan Bieg (room 36A)

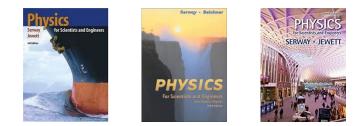
- Lectures
- Exercises
- Laboratories

Bibliography:

• Halliday, Resnick, Walker: Fundamentals of Physics



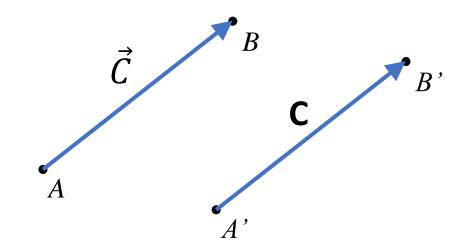
• Serway: Physics for Scientists and Engineers



Vectors

An object that has:

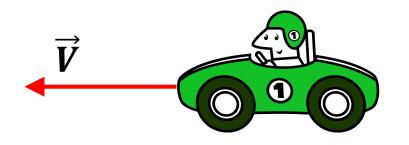
- direction
- magnitude (length)
- unit



Vectors

Examples:

- position $ec{r}$
- displacements $\overrightarrow{\Delta r}$
- velocity \vec{V}
- acceleration \vec{a}



- force \vec{F}
- linear momentum $ec{p}$
- angular momentum \vec{L}

- electric field \vec{E}
- electric displacement field \vec{D}
- magnetic field \vec{B}
- magnetic field strength \vec{H}

Scalars

A scalar quantity is completely specified by a single value with an appropriate unit.

Examples:

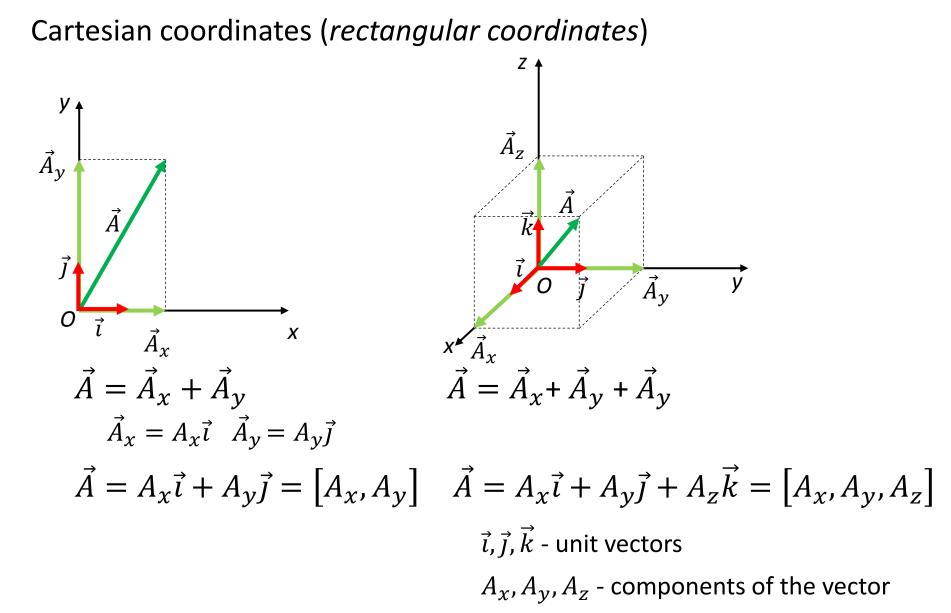
- distance S mass m charge q
- speed V rotational inertia I resistance R
- average speed \overline{V} work W
- time *t*

• energy - E

- capacitance C
- inductance L

• heat - *Q*

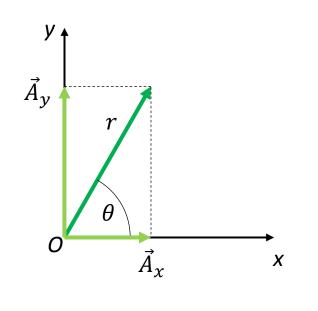
Coordinate systems



Coordinate systems

Polar coordinate system: (r, θ)

- *r* the distance from the origin *O* to the end point
- θ the angle between a line drawn from the origin to the end point and a fixed axis.

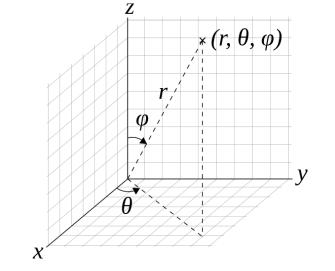


$$\begin{cases} A_x = r\cos(\theta) \\ A_y = r\sin(\theta) \end{cases}$$

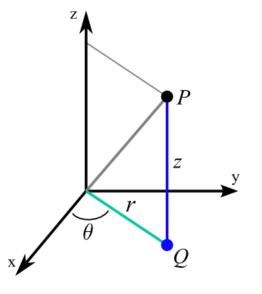
$$\left(r = \sqrt{A_x^2 + A_y^2} \right)$$
$$\theta = \arctan\left(\frac{A_x}{A_y}\right)$$

Coordinate systems

Spherical coordinate system: (r, θ, φ)



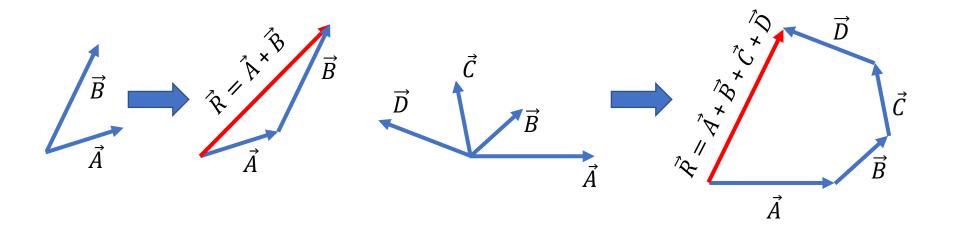
Cylindrical coordinate system: (r, θ, z)



Adding Vectors $\vec{R} = \vec{A} + \vec{B}$

Graphical method:

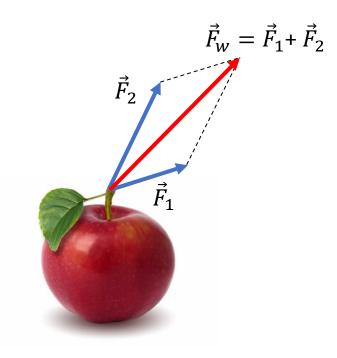
To add vector \vec{B} to vector \vec{A} , first draw vector \vec{A} , with its magnitude represented by a convenient length scale, and then draw vector \vec{B} to the same scale with its tail starting from the tip of \vec{A} . The resultant vector is the vector drawn from the tail of \vec{A} to the tip of \vec{B} .





Example:

• net force: $\vec{F}_w = \vec{F}_1 + \vec{F}_2 + \vec{F}_3 + ...$

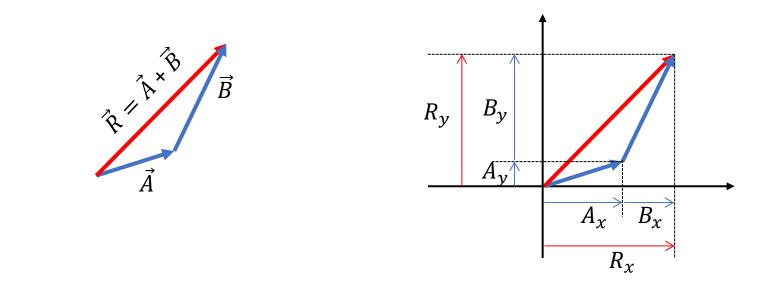


• net electric field: $\vec{E} = \vec{E}_1 + \vec{E}_2 + \vec{E}_3 + \dots$

Adding Vectors

Algebraic method:

To add vector \vec{B} to vector \vec{A} , find the sum of both vectors corresponding components.

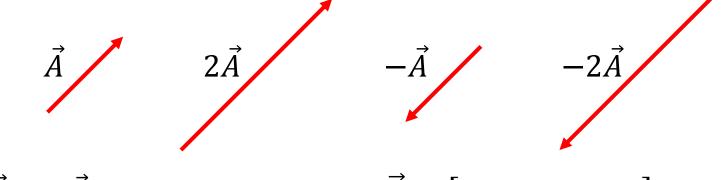


 $\vec{R} = [R_x, R_y, R_z] = (A_x + B_x)\vec{\iota} + (A_y + B_y)\vec{j} + (A_z + B_z)\vec{k}$

Multiplying a Vector by a Scalar

If vector \vec{A} is multiplied by a positive scalar quantity q, then the product $\vec{R} = q \cdot \vec{A}$ is a vector that has the same direction as \vec{A} and magnitude qA.

If vector \vec{A} is multiplied by a negative scalar quantity q, then the product $\vec{R} = q \cdot \vec{A}$ has opposite direction to \vec{A} and magnitude qA.

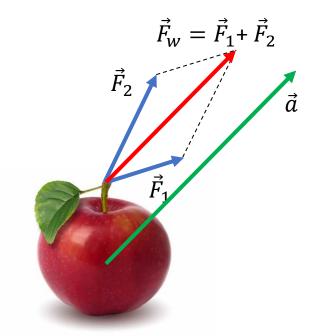


 $\vec{R} = q\vec{A} = qA_x\vec{\iota} + qA_y\vec{J} + qA_z\vec{k} = [qA_x, qA_y, qA_z]$

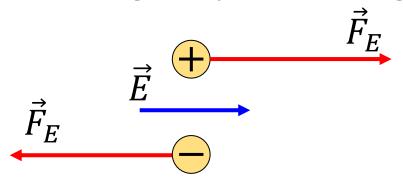
Multiplying a Vector by a Scalar

Example:

• Newton's second law: $\vec{a} = \frac{1}{m}\vec{F}_w$,



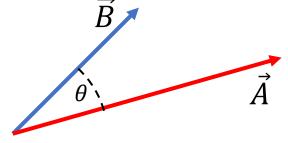
• the electric force acting on a positive or negative charge: $\vec{F}_E = q\vec{E}$



The Scalar Product (dot product) $R = \vec{A} \cdot \vec{B}$

The scalar product of any two vectors \vec{A} and \vec{B} is a scalar quantity equal to the product of the magnitudes of the two vectors and the cosine of the angle θ between them:

$$R = \vec{A} \cdot \vec{B} = AB\cos(\theta)$$



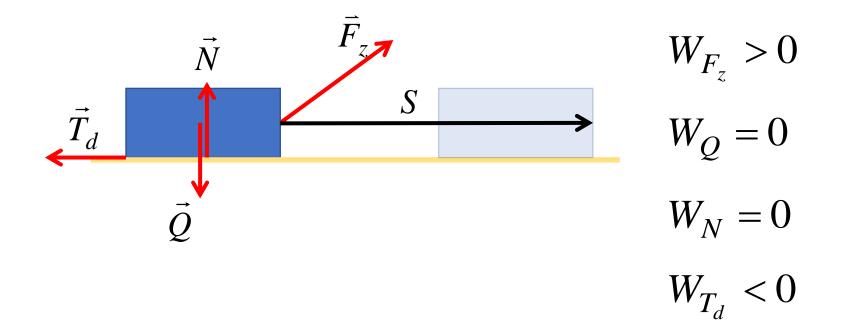
$$R = \vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$

The Scalar Product – observations $\cos(\theta)$ $R = \vec{A} \cdot \vec{B} = AB\cos(\theta)$ 0 180 270 360 90 -1-1) For two parallel vectors ($\theta = 0^{\circ}$): R = AB $\left(\vec{\imath}\cdot\vec{\imath}=\vec{\jmath}\cdot\vec{\jmath}=\vec{k}\cdot\vec{k}=1\right)$ Ŕ 2) For two opposite vectors ($\theta = 180^{\circ}$): R = -AB3) For two perpendicular vectors ($\theta = 90^{\circ}$): R = 0 \vec{R} $\left(\vec{\imath}\cdot\vec{\jmath}=\vec{\imath}\cdot\vec{k}=\vec{\jmath}\cdot\vec{k}=0\right)$

$$R = \vec{A} \cdot \vec{B} = (A_x \vec{i} + A_y \vec{j} + A_z \vec{k}) \cdot (B_x \vec{i} + B_y \vec{j} + B_z \vec{k})$$
$$= A_x B_x + A_y B_y + A_z B_z$$

The Scalar Product (dot product) $R = \vec{A} \cdot \vec{B}$ $\int_{0}^{1} \int_{0}^{\cos(\theta)} \int_{180}^{100} \frac{1}{270} \cdot \frac{1}{360}$

- Example:
- work: $W = \vec{F} \cdot \vec{S}$,

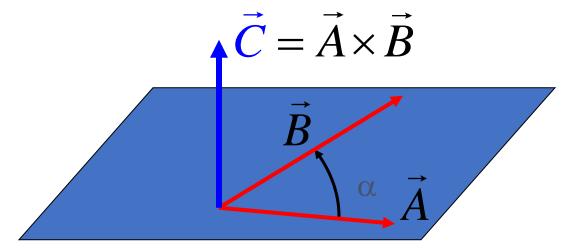


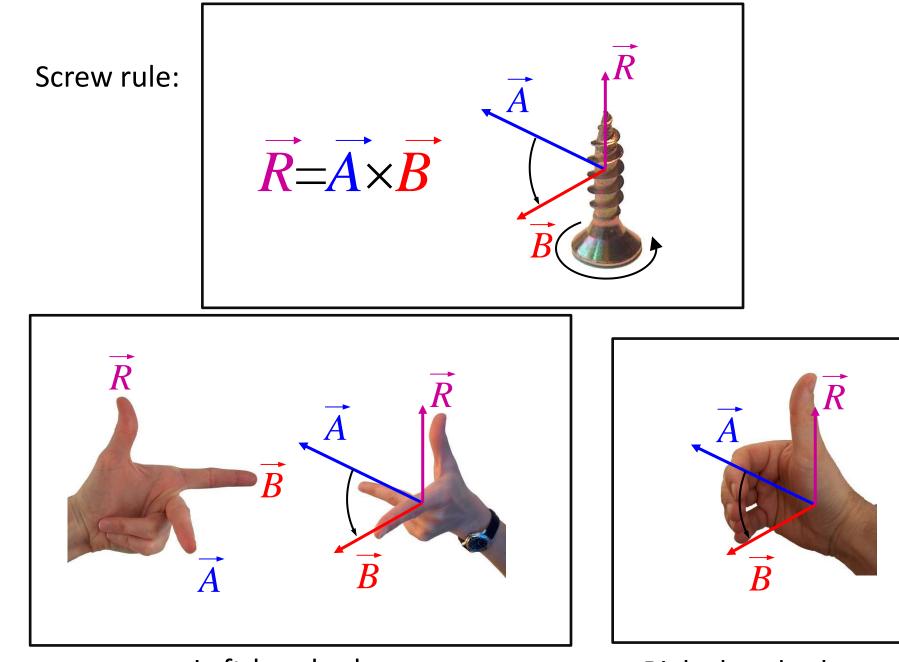
-1

The Vector Product (cross product): $\vec{R} = \vec{A} \times \vec{B}$

The vector product of any two vectors \vec{A} and \vec{B} is a vector with:

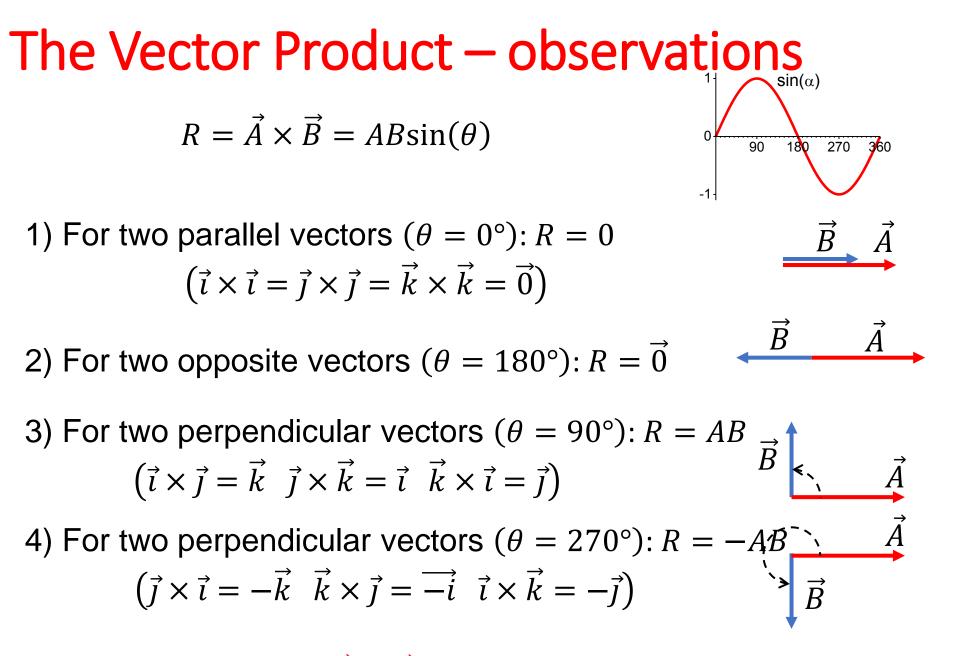
- the magnitude equal to the product of the magnitudes of the two vectors and the sine of the angle θ between them:
 R = ABsin(θ)
- the direction perpendicular to the plane formed by \vec{A} and \vec{B} , and this direction is determined by the screw rule or the right-hand rule or the left-hand rule.





Left-hand rule:

Right-hand rule:



the angle θ is from \vec{A} to \vec{B} – always in anticlockwise direction!!!

The Vector Product – observations

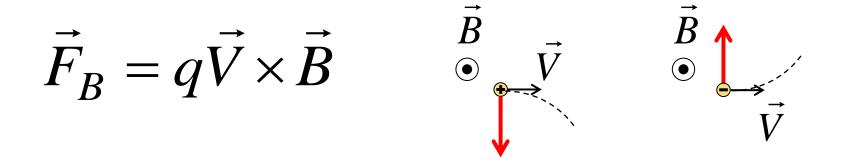
$$R = \vec{A} \times \vec{B} = (A_x \vec{i} + A_y \vec{j} + A_z \vec{k}) \times (B_x \vec{i} + B_y \vec{j} + B_z \vec{k})$$
$$(\vec{i} \times \vec{i} = \vec{j} \times \vec{j} = \vec{k} \times \vec{k} = \vec{0})$$
$$(\vec{i} \times \vec{j} = \vec{k} \quad \vec{j} \times \vec{k} = \vec{i} \quad \vec{k} \times \vec{i} = \vec{j})$$
$$(\vec{j} \times \vec{i} = -\vec{k} \quad \vec{k} \times \vec{j} = -\vec{i} \quad \vec{i} \times \vec{k} = -\vec{j})$$

$$R = (A_{y}B_{z} - A_{z}B_{y})\vec{i} + (A_{z}B_{x} - A_{x}B_{z})\vec{j} + (A_{x}B_{y} - A_{y}B_{x})\vec{k}$$
$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z} \end{vmatrix}$$

The Vector Product (cross product): $\vec{R} = \vec{A} \times \vec{B}$

Example:

- torque: $\vec{M} = \vec{r} \times \vec{F}$,
- angular momentum: $\vec{L} = \vec{r} \times \vec{p}$
- the electric force acting on a moving charge: $\vec{F}_B = q\vec{V} \times \vec{B}$



Problem:

For the two vectors $\vec{A} = 2\vec{i} + 3\vec{j} - \vec{k}$ and $\vec{B} = -3\vec{i} + 2\vec{j}$ determine:

- a) magnitude A and B
- b) sum $\vec{A} + \vec{B}$
- c) difference $\vec{A} \vec{B}$
- d) dot product $\vec{A} \cdot \vec{B}$
- e) cross product $\vec{A} \times \vec{B}$
- f) angle between \vec{A} and \vec{B}
- g) angle between \vec{A} and $\vec{A} \times \vec{B}$